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Abstract--Steady laminar axisymmetric thermal flow past solitary oblate spheroids and non-spherical 
droplets at constant temperature has been numerically analysed. Mean Nusselt number correlations as a 
function of Reynolds number (i.e. 40 ~< Re <~ 120), aspect ratio (i.e. 0.2 ~< E ~< 1.0) and Prandtl number 
(i.e. Pr = 0.7 and 7.0) are presented for rigid spheroids. Non-sphericity effects of water and n-hexane fuel 
droplets on heat transfer mechanisms are also discussed. Thus, the analysis may form a base case for 

studying spheroidal particle effects in convection heat transfer systems. 

Ir~rRODUCTION 

One of  the key assumptions in dispersed flow simu- 
lations is that of particle sphericity. Thus, the extent 
to which the particle shape affects the interfacial trans- 
port properties is of basic interest. Specifically, con- 
sidering steady laminar axisymmetric thermal flow 
past a rigid oblate spheroid or a non-spherical non- 
evaporating droplet, the gas phase convection heat 
transfer is analysed and mean Nusselt number cor- 
relations for spheroids of different aspect ratios are 
proposed. This base case study is of interest in a first- 
step analysis and design of a wide range of two-phase 
flows, including spray systems, air-breathing pro- 
pulsion systems, separators, etc. Surface blowing due 
to droplet vaporization and transient effects such as 
vortex shedding, droplet oscillations and multiple 
droplet interactions, will be considered in future work. 

Experimental observations and computational 
analyses indicate that the oblate spheroid is in many 
applications a good shape-approximation for non- 
spherical droplets [1, 2]. Furthermore, it is assumed 
that the particles are non-oscillating for the Reynolds 
number range of interest i.e. 40 ~< Re <~ 120 [1]. 
Reviews of theoretical solutions and experimental cor- 
relations to low and intermediate Reynolds number 
flows past non-spherical axisymmetric solids have 
been given by Clift et al. [1], Happel and Brenner [3] 
and Soo [4]. Most notable are the numerical solutions 
of the reduced Navier-Stokes equations presented by 
Masliyah and Epstein [5, 6], Pitter et al. [7] and Chu- 
chottaworn and Asano [8]. Masliyah and Epstein [5] 
performed an extensive numerical study of the flow 
field around both oblate and prolate spheroids with 
principle axis ratio',; of 1 to 0.2 for Reynolds numbers 
up to 100. In a complementary study, Masliyah and 
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Epstein [6] determined the heat and mass transfer 
quantities for rigid oblate and prolate spheroids with 
a principle axis ratio of 0.2. The analysis was limited 
to constant property flow at Reynolds numbers up to 
100 with a Prandtl number of 0.7 and creeping flow 
at various Peclet numbers. Several Nusselt number 
correlations were presented. However, these cor- 
relations are not readily usable due to the required 
knowledge of the spheroidal surface area which is not 
easily calculated. Pitter et al. [7] studied the flow field 
around thin oblate spheroids with aspect ratios of 
0.05 and 0.2 at intermediate Reynolds numbers. Their 
results compared well with the results by Masliyah 
and Epstein [5] as well as their own experimental 
observations. More recently, Chuchottaworn and 
Asano [8] performed an extensive numerical study 
of the flow characteristics as well as the transport 
phenomena associated with flow around both prolate 
and oblate rigid spheroids (labeled as 'spheroidal 
droplets' by the authors) over a wide range of aspect 
ratios. This analysis was limited to constant-property 
flow at intermediate Reynolds numbers with Prandtl/ 
Schmidt numbers of 0.5 to 2.0. The results compared 
well with both Masliyah and Epstein [5, 6] and Pitter 
et al. [7]. Dwyer and Dandy [9] studied the fully three- 

dimensional thermal flow field which exists for rigid 
ellipsoids whose principle axes are not aligned with 
the flow. This work shows the effect of various angles 
of attack on the distribution of the surface pressure, 
shear stress and heat flux, as well as the mean Nusselt 
number and the drag coefficient. 

Very little work has been done in the area of thermal 
flow past non-spherical droplets. A brief review of this 
topic has been given by Clift et al. [1]. The deter- 
mination of the 'true' droplet shape result from flow- 
induced deformation is of prime importance in the 
analysis of the real interfacial transport properties. 
Wellek et al. [10] experimentally studied the shape of 
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NOMENCLATURE 

a major principal axis of spheroid 
b minor principal axis of spheroid 
Cp specific heat 
CD drag coefficient 
d characteristic diameter of particle or 

droplet 
D pressure mass matrix 
E spheroid's aspect ratio, b/a 
F load vector 
FD drag force 
h heat transfer coefficient 
k thermal conductivity 
L continuity matrix 
n normal coordinate 
N convective matrix 
Nu Nusselt number 
O order of 
p pressure 
Pe Peclet number 
Pr Prandtl number 
q~' non-dimensional heat flux 
r radial coordinate 
R(z) radial position as a function of z 
Re Reynolds number 
S diffusion matrix 
T temperature 
u, v velocity components in z and r 

directions 
u velocity vector 
U~ free stream velocity 

We Weber number 
z axial cylindrical coordinate. 

Greek symbols 
y surface tension 

density ratio 
0s separation angle 
2 viscosity ratio 
# dynamic viscosity 
v kinematic viscosity 
p density 
a stress tensor 
r shear stress. 

Subscripts 
d based on diameter 
da major principal axis 
de volume equivalent diameter 
g gas phase 
i fluid phase (i = 1 or g) 
1 liquid phase 
m mean 
n normal 
o surface 
t tangential 
s surface 
c~ free stream. 

Superscript 
* dimensional quantities. 

liquid drops in a liquid media. It was determined that 
drops at small Reynolds and Weber numbers remain 
almost spherical which agreed well with the relation of 
Taylor and Acrivos [11]. However, at higher Reynolds 
and Weber numbers the drops became noticeably non- 
spherical and departed substantially from the shapes 
predicted by Taylor and Acrivos [ 11]. One of the most 
important results of this work was that the Weber 
number is the non-dimensional group upon which the 
droplet deformation depends and that the viscosity 
ratio plays a secondary, but certainly not insignificant 
role. The current state-of-the-art numerical analysis 
of isothermal flow past a deformed liquid droplet is 
the work by Dandy and Leal [12]. They determined 
the degree of deformation as a function of Reynolds 
number, Weber number, density ratio and viscosity 
ratio. Their numerical results indicate that for low 
Reynolds number flows the droplet shape varies from 
approximately spherical to a shape approaching a 
spherical cap as the Weber number is increased, while 
for intermediate Reynolds numbers the droplet shape 
becomes increasingly spheroidal as the Weber number 
is increased. 

The present study focuses on non-sphericity effects 
in convection heat transfer around solids and droplets, 

and it is a first step in extending our direct numerical 
thermal flow simulations of multiple interacting par- 
ticles [13-15]. 

ANALYSIS 

The governing equations for axisymmetric con- 
stant-property flow without phase change are the 
steady-state continuity, Navier-Stokes and energy 
equations. The continuity and Navier-Stokes equa- 
tions are applied to both the continuous gas phase 
and the dispersed liquid droplet phase. The energy 
equation is applied only to the continuous gas phase. 
The steady-state solution of the energy equation for 
the combined continuous and dispersed phases would 
result in a trivial solution for the temperature field. 
Hence, the temperature for the liquid phase is held 
constant. The governing equations and their cor- 
responding boundary conditions are non-dimen- 
sionalized with a characteristic diameter of the particle 
or droplet, d, the free steam velocity, U~, twice the 
dynamic pressure, p U 2, and the characteristic tem- 
pera ture  difference. The characteristic diameter is 
defined as the major principle axis for both the liquid 
and rigid oblate spheroids. In a comparison study with 
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the work by Dandy and Leal [12], the characteristic 
diameter is chosen as the spherical volume equivalent 
diameter. Integral quantities such as the total drag 
coefficient and mean Nusselt number can be expressed 
using either dax~ or d~q~ as given in equations (20) 
and (21). 

The dimensionless continuous gas phase equations 
are : 

V" Ug = 0 (1) 

(Ug "V)ltig = --Vpg + ol--~V2Ug (2) 
/Xeg 

and 

| 
(u,. V) T, = ~eg V2 Tv (3) 

The dimensionless governing equations for the liquid 
phase are : 

V" ut = 0 (4) 

and 

1 
(u~- V)ut = -Vp~ + ~ e  V2n~ (5) 

where the dimensionless terms are defined as : 

- -  * * *2  u = u*/U*, Pg,1 -pg,J(Pg.lUo~ ), 

T = ( T * -  T * ) / ( T * -  To*), V = V'd*,  

Re~ = ~ ] Re, = \ _ m y _ ] ,  

and Peg = Rug Pr. (6a-g) 

The present system can be characterized by four inde- 
pendent dimensionless groups; the continuous gas 
phase Reynolds number, Re v the density ratio, 
( = (p*/pg*), the v:[scosity ratio, 2 = (#*//~g*) and the 
aspect ratio, E = (b/a). For  the steady-state droplet 
shapes of Dandy and Leal [12], the aspect ratio is 
replaced by the Weber number, We = (U*2d*~p*/y*). 
The Weber number indicates the degree to which 
droplets will dynamically deform. For  this study, how- 
ever, the droplet shapes are fixed a priori, thus the 
Weber number (i.e. the surface tension) does not 
appear in the problem statement. The liquid-phase 
Reynolds number was not included as one of the inde- 
pendent paramete, rs because it can be expressed in 
terms of the gas-phase Reynolds number, the density 
ratio and the viscosity ratio as Rel = ((~2)Reg. 

The continuous, gas-phase flow field, although an 
infinite medium, has been limited to a cylindrical 
domain (cf. Fig. 1). Based on trial-and-error runs, its 
extent is large enough to satisfy all boundary 
conditions. 

The inlet boundary conditions are : 

u =  1, v = 0 ,  T =  1. (7a--c) 

Natural boundary conditions are specified at the out- 
let and top boundaries respectively : 

au av aT 
= - -  = 0 (8a-c) 

az - az Oz 

au av aT 
0. (9a-c) 

dr dr dr 

Along the centerline (i.e. the axis of symmetry, r = 0) 
the boundary conditions are : 

au aT 
v = 0, 0. (10a-c) 

dr dr 

The interfacial compatibility conditions are for the 
solid particles : 

u = v = 0 ,  T = 0  ( l l a - c )  

and for the droplets : 

Un,g = Un, l = O, Ut,g = Ut,l, "C~g = Z~l , T = 0  

(12a-e) 

where 

CDFo = ( ~ d 2 )  f2 (an)~dA (15b) 

CDskin = (~'s,g)z dA. ( 1 5 c )  

The shear stress, Zs,g, is defined by equation (13a) and 
the normal stress is given below : 

2 nun \ ,2 
=  n(V=2P  = - P +  ,=.,z>) 

(16) 

The Nusselt number, Nua = (h'd*/k*), can be related 
to the non,dimensional surface heat flux, q~', which in 

where the shear stresses are defined as : 

Zs*g = "t's,g" (U*2pg *) = (Rug" -~  ~" (U~2pg*) 

(13a) 

and 

/ 1 du~ I \ ,2 , 

(13b) 

In non-dimensional form the continuity of shear stress 
is written as : 

%,, = \p. .]  .,g = ~- z... (14) 

The interfacial quantities such as separation angle, 
pressure distribution, drag coefficient and Nusselt 
number, are calculated for all cases. The drag 
coefficient is comprised of two components : the form 
(i.e. pressure) drag coefficient and the skin (i.e. fric- 
tion) drag coefficient 

Co ..... = CDFo~ + CDS~n (15a) 
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Fig. 1. System schematic. 

Outlet 

turn is directly proportional to the non-dimensional 
temperature gradient at the interface. 

OT 
NUo = Pe q~' = -- ~n" (17) 

Here, the non-dimensional heat flux is defined as" 

q* 
q~' - 0 8 )  

[p=e. u ~  (T~  - T*)] 

The Nusselt number and the non-dimensional surface 
heat flux are by definition always positive quantities, 
while the temperature gradient is always a negative 
quantity. This is easily verified from the definition 
of the non-dimensional temperature, equation (6c), 
which is based on the fact that the normal direction 
always points away from the interface. 

The analysis involving both solid and liquid oblate 
spheroids is based on a characteristic length equal 
to a spheroid's major principle axis. This choice of 
characteristic length is suitable for the analysis of solid 
particles of  varying aspect ratios, as well as for the 
comparison between liquids and solids of the same 
aspect ratio. However, this choice of characteristic 
length does not allow comparisons between droplets 
of different aspect ratios. Droplets of different aspect 
ratios correspond to droplets of different volumes. 
Thus employing d = d, xi~ provides little insight into 
the effect of droplet deformation on the continuous 
phase thermal flow field or the dispersed phase iso- 
thermal flow field. Therefore, the calculated results 
were transformed to correspond to a characteristic 
length equal to the spherical volume equivalent diam- 
eter. Reynolds numbers, drag coefficients and Nusselt 
numbers based on a characteristic length equal to the 
spheroid's major principle axis can be transformed to 
correspond to an equivalent spherical-volume system 
as follows : 

Red~ = Reaa(E) 1/3 (19) 

/ 1 N 2/3 
: ( 2 0 )  

(21) NUde = NUaa(E)1/3 

where 

de ~ volume equivalent diameter, dequi v. 
da ~ major principal axis, daxis, 

NUMERICAL SOLUTION 

In the Galerkin finite-element formulation a system 
of nonlinear algebraic equations of the form 

[S]v+[N(v)]v+e- '[L]'r[D]- '[L]v = F (22) 

appears [16]. Linearization of equation (22) is 
obtained with the efficient quasi-Newton method if 
the radius of convergence is sufficient [16]. For  prob- 
lems with small computational domains (i.e. the liquid 
droplet domain) the fully coupled penalty formulation 
of (22) is used. Instead of solving the global system 
matrix found in (22), the gas phase quantities are 
obtained with a segregated solver algorithm using the 
'mixed' formulation where each conservation equa- 
tion is solved separately [17]. Hence, for large prob- 
lems, creation of a huge global matrix is avoided in 
favor of a group of smaller sub-matrices which are 
solved in a sequential order. Due to the sequential 
nature of this algorithm, more iterations are required 
than for the fully-coupled method ; however, the time 
per iteration may be short so that for very large prob- 
lems a significant reduction in both computer time 
and core memory requirements may result. 

The dimensions of the computational domain 
depend primarily on the free stream velocity, the fluid 
Prandtl number, and the particle shape (cf. Fig. 2). 
The radial dimension is inversely related to the aspect 
ratio and the Peclet number and the axial dimensions 
are directly related to the Peclet number and inversely 
related to the aspect ratio. A variable-density meshing 
strategy is utilized where small elements are placed at 
the interface and smoothly transitioned to coarser 
elements at the boundaries. The nodal spacing on the 
interface is about 3.2 degrees for E = 1, i.e. a sphere. 
Nine-node isoparametric quadrilateral elements were 
used where the velocity and temperature were 
approximated by biquadratic shape functions and the 
pressure by linear shape functions [16]. Meshes for 
spheroidal particles were generated by multiplying the 
sphere's streamwise axis by the aspect ratio. The mesh 
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Fig. 2. (a) Representative finite-element mesh for axisymmetric flow past spherical/non-spherical particles 
and drops. (b) Liquid-phase mesh for a spheroidal droplet, E = 0.4. 

was refined and skewness of elements near the inter- 
face was reduced for the worst case, i.e. a spheroid 
with aspect ratio E = 0.2, until mesh-independence of 
the results was achieved. About  1020-1325 elements 
were needed for the gas phase and 322-350 elements 
were necessary for the droplets. 

The software utilized (cf. ref. [17]) was directly 
applicable to the single-phase problem (i.e. thermal 
flow past rigid spheroids). However, the direct exten- 
sion to the two-phase droplet flow problem, while 
possible, was found to be neither computationally 
efficient nor stable. The liquid droplet domain is sub- 
ject to Neumann boundary conditions, requiring a 
slow and robust iteration scheme, while the larger 
gas phase domain is subject to Dirichlet boundary 
conditions, which allow for quicker, less robust 
schemes. If  both phases are solved simultaneously, the 
slower more robust scheme required for the droplet 
region must be used for the 'entire' domain. For  this 
reason, the two doraains were solved sequentially util- 
izing the aforementioned software package in com- 
bination with a supplemental interfacial convergence 
routine. The solution procedure for the gas and liquid 
flow fields was obtained as follows. Starting with 
Stokes' flow for the gas phase as an initial guess, the 
interface is considered first to be rigid. The resulting 
shear stress at the interface is used as the boundary 
condition for the liquid phase. The stress-induced 

liquid-phase flow field is solved and the surface vel- 
ocity is used as the interfacial boundary condition 
for the gas phase. The matching of the compatibility 
conditions required between nine and 30 iterations 
with an optimal under-relaxation coefficient of 0.65 
and a maximum relative error bound of 10 -3. Higher 
Reynolds number flows utilize the lower Reynolds 
number solution as their initial guess. 

RESULTS AND DISCUSSION 

The finite-element software used (cf. ref. [17]) has 
been validated with empirical correlations for fluid 
flow and heat transfer parameters presented by Clift 
et al. [1]. Table 1 summarizes the comparisons for 
solid spheres while Fig. 3 shows a comparison of the 
local Nusselt number for air flow at Re = 100 past a 
solid particle with aspect ratios E = 1.0 and 0.2. 
Chiang [18], Comer [19] and Comer and Kleinsteuer 
[20] provide additional tables and graphs comparing 
numerical predictions and accepted data sets for ther- 
mal flow past liquid spheres and solid spheroids. Table 
1 shows a very good agreement between the predicted 
flow data and empirical correlations while the cor- 
responding Nusselt number data sets differ slightly for 
Peclet numbers greater than, say, 500. The dis- 
crepancies may be caused in part by complications in 
measuring indirectly the Nusselt number for higher 
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Table 1. Comparison of data sets for rigid sphere 

Separation Nusselt no., Nusselt no., 
angle, Drag coefficient, Nu m Nu m 

Os Co (er = 0.7) (er  = 7.0) 

Clift Clift Clift Clift 
Re Model [1] Model [1] Model [1] Model [1] 

40 143.9 144.4 1.80 1.79 5.007 5.077 9.655 9.691 
50 138.9 139.3 1.58 1.57 5.398 5.457 10.516 10.521 
60 135.3 135.5 1.43 1.42 5.749 5.795 11.303 11.259 
75 131.4 131.4 1.27 1.26 6.220 6.247 12.403 12.240 
90 128.4 128.2 1.15 1.14 6.644 6.648 13.425 13.111 

100 126.6 126.5 1.09 1.09 6.906 6.894 14.060 13.645 
110 125.2 125.0 1.04 1.04 7.158 7.126 14.673 14.148 
120 123.8 123.7 1.00 0.99 7.400 7.347 15.256 14.625 

17.5 . . . .  I . . . .  I . . . .  I A . . . .  I . . . .  I . . . .  [ ' 

Re= 100; Pr = 0.7 
15.0 

- -  E = 1 . 0 ;  M o d e l  

• E = 1 . 0 ;  M & E  [ 6 1  

. . . . . . .  E = 0 . 2 ;  Model 
1 2 . 5  , • E = 0 . 2 ;  M & E  [ 6 ]  

z 

7.5 

I L ~ .  . . . . . .  . . . . . .  

5.0 

2.5 
. . . .  I . . . .  I . . . .  I , , , i i i i i i l i i t t I 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

There, 0 (radians) 

Fig. 3. Local Nusselt number variations for rigid oblate 
spheroids compared with those presented by Masliyah and 

Epstein [6]. 

P rand t l  n u m b e r  fluids which exhibit  much  th inner  
thermal bounda ry  layers. On the o ther  hand,  mesh 
ref inement  for accurate  s imulat ion also has  some prac- 
tical limits, especially in the interfacial  h igh-curvature  
region of  non-spher ical  particles. 

A.  Sol id  spheroids 
Figures 4(a) and  4(b) depict the effects of  aspect 

rat io  (i.e. E = 0.4-1.0) and  gas s t ream velocity (i.e. 
Reda = 40 and  120 for  Pr = 0.7) on the local Nussel t  
n u m b e r  of  solid spheroids.  It is observed tha t  at  the 
s tagna t ion  point ,  0 = 0 °, the magni tude  o f N u ( O  = 0 °) 
varies directly with  E. As can be deduced f rom the 
Reynolds  analogy,  as the frictional drag coefficient 
decreases with smaller aspect rat ios the Nussel t  num-  
ber  reduces for a given Peclet number .  In contrast ,  
at  the rear  s tagnat ion  point ,  0 = 180 °, the Nussel t  
n u m b e r  is a lmost  independent  of  the aspect rat io  if  
the Peclet n u m b e r  is small (cf. Fig. 4(a)).  However,  

(a) 9.0 

7.5 

v 6.0 

• 4.5 

3.0 

0.0 

. . . .  I . . . .  I . . . .  , ' ~  . . . .  I . . . .  I . . . .  I ' 

/i 
._._~._ / i R e = 4 0 ' P r = 0 . 7  

, J "  i / ~ , '  \ , _ _  _ _  E = 1 ,  Sphere 

0.5 1.0 1.5 2.0 2.5 3.0 
Theta, O (radians) 

(b) _ '  ' ' ' I . . . .  I . . . .  J . . . .  I . . . .  f . . . .  I ' .  

12.0 - ~ . :  .-,',, / \ : Re = 120; Pr = 0.7- 

........ \2/,, ',, I ____ ,.,,sph.e 
- / \  \ ~l E O e  lO.S . . . . . . .  -" \ ,, ~,, 

E=o., 

~ 9 . o  \ " \~ i  

7 . 5  ' ~ i  t . 

6.0 

, , , [ . . . .  I . . . .  J . . . .  I , i i ~ ,  . , I I 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 
Theta, 0 (radians) 

Fig. 4. Local Nusselt number variation for aspect ratios 
E =  1, 0.8, 0.6, 0.4; (a) at Re = 40 and Pr = 0.7; (b) at 

Re = 120 and Pr = 0.7. 
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Fig. 5. Mean Nusselt number for Pr = 0.7, 7.0 and aspect 
ratios E = 1, 0.8, 0.6, 0.4. 

with increasing Peclet numbers, wake recirculation 
effects generate recoveries of the local Nusselt num- 
bers which increase as the aspect ratio decreases (cf. 
Fig. 4(b)). These local (instantaneous) Nusselt num- 
bers are most important when simulating multiple 
interacting vaporizing droplets. When plotting the 
surface-averaged Nusselt numbers Num = Num 
(Re, Pr, E) on a log-log graph (cf. Fig. 5), two heat 
transfer correlations for Pr - -0 .7  and Pr = 7.0 at 
intermediate Reynolds numbers were obtained via 
least-squares curve fitting. 

Num = 1.393Re°a 348 exp [0.248(1 - E ) ]  

for Pr = 0.7 (23a) 

Num = 2.074Re°~ 4' 5 exp [0.31 (1 - E)] 

for Pr = 7.0. (23b) 

The major advantage of these two correlations is their 
ease of use. The differently weighted influence of the 
Reynolds number in the two equations is due to the 
approximation of the nonlinear effect of the Prandtl 
number on the heat transfer, employing a linear 
coefficient. 

B. Non-spherical droplets 
In the light of the isothermal droplet assumption, 

the major difference in convection heat transfer 
between droplets and solids is caused by the shear 
stress induced (surface) motion of the liquid phase. 
This in turn influences the thermal gas boundary layer, 
the interface temperature gradient and hence the Nus- 
selt number (cf. equation (17)). The velocity and iso- 
therm plots depicted in Figs. 6 and 7 show the effects 
of the viscosity and aspect ratios on the gas phase 
velocity and temperature fields at Reda = 100. The 
viscosity and aspect ratio effects on the liquid phase 

flow field are given in ref. [20]. It can be seen that the 
higher viscosity water droplet has a larger (i.e. more 
robust) recirculation zone than the lower viscosity n- 
hexane droplet, whose wake region is almost stagnant. 
As a result, the isotherms are closer together near the 
rear stagnation point for the water droplet than for the 
n-hexane droplet, which indicates that water droplets 
have a higher heat transfer rate in this region. 
However, light fuel droplets have substantially higher 
heat transfer rates over the front part because of 
increased droplet circulation which results in higher 
overall Nusselt numbers. When comparing droplets 
with different aspect ratios it is important to remember 
that the characteristic diameter, and hence the Reyn- 
olds number, used in this analysis was based on the 
major principle axis. Hence, the actual volume-equi- 
valent Reynolds number for the case E = 0.4 is 
Redo ~ 75 (cf. Fig. 7). Thus for the same volume- 
equivalent Reynolds number the effect of the aspect 
ratio on the recirculation zone and the corresponding 
isotherms would be even more pronounced. For  water 
droplets with 2 = 40.2, NUm.liquid differs only mar- 
ginally from Nu~,solia for intermediate Reynolds num- 
bers and for all aspect ratios because of the sig- 
nificantly reduced slip velocities (cf. Fig. 8). 
In contrast, for liquids with low viscosity ratios, 
for example n-hexane fuel droplets with 2 = 4.12, 
Numjiquid(Re) differs substantially from Num.,ol~d(Re) as 
shown in Fig. 9, When using the volume-equivalent 
diameter as a length scale, as would be appropriate for 
comparisons between deforming but non-evaporating 
droplets of differing aspect ratios, Num,liquid is approxi- 
mately independent of the aspect ratio in the range 
0.5 ~< E ~< 1.0 [19]. However, the rate of heat transfer 
is by no means independent of the aspect ratio. In fact 
the rate of heat transfer increases as the aspect ratio 
decreases, since the surface area of a spheroid is 
inversely proportional to the aspect ratio. 

The gas phase velocity vector and constant-tem- 
perature fields for steady-state (i.e. equilibrium) drop- 
let shapes corresponding to We = 0.5 and 8.0 [2] are 
depicted in Figs. 10(a) and 10(b) respectively. The 
effects of the Reynolds and Weber numbers on the 
liquid phase flow field are shown in refs. [2] and [12]. 
By comparing the graphs, it is evident that the droplet 
corresponding to We = 8.0 has a larger principle axis 
than the droplet corresponding to We = 0.5 (cf. Fig. 
10). This is because the characteristic diameter used 
in this analysis was equal to the volume equivalent 
diameter (i.e. the volume was held constant while the 
droplet deformed). It can be seen that the droplet 
corresponding to We = 0.5 is essentially spherical and 
the velocity and temperature fields resemble those 
shown in Fig. 6(b). At We = 8.0 the droplet is nearly 
spheroidal and approaches a shape similar to Fig. 7(b) 
(i.e. E ~ 0.4). As was the case for solid spheroids (cf. 
Fig. 4), the local Nusselt number in the vicinity of the 
frontal stagnation point is directly related to the aspect 
ratio. Thus the local Nusselt number over the front 
of the We = 0.5 droplet is larger than that over the 
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Water Droplet 

n-hexane Droplet 

Fig. 6, Ve loc i ty  and  i so therms  for  spherical  water  (2 = 40.2 and  ( = 845.6) and  n - h e x a n e  (2 = 4.12 and  
= 260.7)  droplets  where  E = 1, Re = 100 and  Pr = 0.7. 

Water Droplet 

:.-"7 
"_2-" 

n-hexane Droplet 

Fig. 7. Ve loc i ty  and  i so therms  for spheroidal  water  (2 = 40.2 and  ( = 845.6)  and  n - h e x a n e  (2 = 4.12 and  
( = 260.7)  droplets  where  E = 0.4, Re = 100 a n d  Pr = 0.7. 
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Fig. 8. Mean Nusselt number based on the principal axis for 
a water droplet (2 = 40.2 and ( = 845.6) and a rigid oblate 
spheroid at aspect r~Ltios, E = 1, 0.8, 0.6, 0.4 for a Pr = 0.7. 
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Fig. 9. Mean Nusselt number based on the principal axis for 
an n-hexane droplet (2 = 4.12 and ~ = 260.7) and a rigid 
oblate spheroid at aspect ratios, E = 1, 0.8, 0.6, 0.4 for a 

Pr = 0.7. 

W e = O . $  

W e  = 8 .0  

Fig. 10. Velocity and isotherms for the steady-state droplet shapes of Dandy [2] for (2 = 4, ( = 0.909, 
We = 0.5 and 8.0) at Re = 100, Pr = 0.7. 

We = 8.0 droplet .  The  We = 8.0 droplet  has  a m u c h  
larger and  s t ronger  recirculat ion reg ion;  however,  the 
i so therm spacings appear  to be approximate ly  the 
same for  b o t h  droplets  near  the rear  s tagnat ion  point ,  
indicat ing equiwdent  local Nussel t  number s  in this 
region. The  mean  Nussel t  number s  for  the dynami-  

cally deformed droplet  shapes are shown in Fig. 11. 
The droplet  cor responding  to We = 8.0 has  a lower 
Nussel t  n u m b e r  and  heat  flux t han  does the droplet  
with  We = 0.5 as al luded to above.  However,  the 
deformed droplet  has  a higher  overall  heat  t ransfer  
rate since it has  substant ial ly more  surface area t han  
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Fig. 11. Mean Nusselt number based on the volume equi- 
valent diameter for the liquid droplet shapes calculated by 
Dandy [2] for We = 0.5 and 8.0 (2 = 4 and ( = 0.909 and 

Re = 60) for Pr = 0.7. 

the spherical droplet.  The close agreements  between 
the equi l ibr ium shapes (cf. Fig. 10) and  the spheroidal  
shapes (cf. Figs. 6 and  7) suppor t  the present  assump- 
t ion tha t  mos t  deformed droplets  can be modeled  as 
spheroids.  
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